Also note that the if the stream exponents
is Euler's continued fraction, the stream bases
(RLRLRLRLRLRLR...) is nothing else than the golden ratio in our Stern-Brocot tree number system. So, if you want a rational approximation of Φ instead, just do this
> (define (Φ ref)
(mat->rat (stream-ref (stream-scan mat-mul I bases) ref)))
> (time (Φ 10000))
cpu time: 33 real time: 34 gc time: 15
'(/
88083137989997064605355872998857923445691333015376030932812485815888664307789011385238647061572694566755888008658862476758094375234981509702215595106015601812940878487465890539696395631360292400123725490667987980947195761919733084221263262792135552511961663188744083262743015393903228035182529922900769207624088879893951554938584166812233127685528968882435827903110743620870056104022290494963321073406865860606579792362403866826411642270661211435590340090149458419810817251120025713501918959350654895682804718752319215892119222907223279849851227166387954139546662644064653804466345416102543306712688251378793506564112970620367672131344559199027717813404940431009754143637417645359401155245658646088296578097547699141284451819782703782878668237441026255023475279003880007450550868002409533068098127495095667313120369142331519140185017719214501847645741030739351025342932514280625453085775191996236343792432215700850773568257988920265539647922172315902209901079830195949058505943508013044450503826167880993094540503572266189964694973263576375908606977788395730196227274629745722872833622300472769312273603346624292690875697438264265712313123637644491367875538847442013130532147345613099333195400845560466085176375175045485046787815133225349388996334014329318304865656815129208586686515835880811316065788759195646547703631454040090435955879604123186007481842117640574158367996845627012099571008761776991075470991386301988104753915798231741447012236434261594666985397841758348337030914623617101746431922708522824868155612811426016775968762121429282582582088871795463467796927317452368633552346819405423359738696980252707545944266042764236577381721803749442538053900196250284054406347238606575093877669323501452512412179883698552204038865069179867773579705703841178650618818357366165649529547898801198617541432893443650952033983923542592952070864044249738338089778163986683069566736505126466886304227253105034231716761535350441178724210841830855527586882822093246545813120624113290391593897765219320931179697869997243770533719319530526369830529543842405655495229382251039116426750156771132964376
54438373113565281338734260993750380135389184554695967026247715841208582865622349017083051547938960541173822675978026317384359584751116241439174702642959169925586334117906063048089793531476108466259072759367899150677960088306597966641965824937721800381441158841042480997984696487375337180028163763317781927941101369262750979509800713596718023814710669912644214775254478587674568963808002962265133111359929762726679441400101575800043510777465935805362502461707918059226414679005690752321895868142367849593880756423483754386342639635970733756260098962462668746112041739819404875062443709868654315626847186195620146126642232711815040367018825205314845875817193533529827837800351902529239517836689467661917953884712441028463935449484614450778762529520961887597272889220768537396475869543159172434537193611263743926337313005896167248051737986306368115003088396749587102619524631352447499505204198305187168321623283859794627245919771454628218399695789223798912199431775469705216131081096559950638297261253848242007897109054754028438149611930465061866170122983288964352733750792786069444761853525144421077928045979904561298129423809156055033032338919609162236698759922782923191896688017718575555520994653320128446502371153715141749290913104897203455577507196645425232862022019506091483585223882711016708433051169942115775151255510251655931888164048344129557038825477521111577395780115868397072602565614824956460538700280331311861485399805397031555727529693399586079850381581446276433858828529535803424850845426446471681531001533180479567436396815653326152509571127480411928196022148849148284389124178520174507305538928717857923509417743383331506898239354421988805429332440371194867215543576548565499134519271098919802665184564927827827212957649240235507595558205647569365394873317659000206373126570643509709482649710038733517477713403319028105575667931789470024118803094604034362953471997461392274791549730356412633074230824051999996101549784667340458326852960388301120765629245998136251652347093963049734046445106365304163630823669242257761468288461791843224793434406079917883360676846711185597501)
This has very little to do with the code on the rosettacode's page, it's something fun from Concrete Mathematics