[ prog / sol / mona ]

prog


LISP Puzzles

38 2020-04-13 00:04

[4/4]
This version can go above R(10^30) since space consumption is irrelevant and it can simply be left to run some more, but above R(10^30) the fans go into jet engine mode and I do not want to stress my potato. Here is the data table showing the exponent k, the value of R(10^k), the bit count of the R value and the number of generators:

$ cat levels.txt
 1                                                           69   7 0
 2                                                         5764  13 1
 3                                                       526334  20 2
 4                                                     50874761  26 3
 5                                                   5028514748  33 3
 6                                                 500918449417  39 3
 7                                               50029364025646  46 3
 8                                             5000934571821489  53 4
 9                                           500029664631299282  59 4
10                                         50000940106333921296  66 4
11                                       5000029765607020319048  73 4
12                                     500000941936492050650505  79 4
13                                   50000029798618763894670256  86 4
14                                 5000000942529842698007077786  93 4
15                               500000029809255627825531266625  99 5
16                             50000000942720152238624116795401 106 5
17                           5000000029812655507343465281696595 112 5
18                         500000000942780823112495107784753816 119 5
19                       50000000029813737262126730811322149673 126 5
20                     5000000000942800098290022420982686040347 132 5
21                   500000000029814080548392288266955229183571 139 5
22                 50000000000942806209878293665994446398371544 146 5
23               5000000000029814189323670710814676032031444555 152 5
24             500000000000942808145472258657037814775197247031 159 5
25           50000000000029814223760934912839828327249688721190 166 5
26         5000000000000942808758091081952084125868709915711089 172 5
27       500000000000029814234658067055252766458087914346630413 179 5
28     50000000000000942808951913512756782469229223199209677641 186 5
29   5000000000000029814238105320163714566005337846445873165675 192 5
30 500000000000000942809013222649956573426148951590151576716407 199 6

It can be seen that the number of generators increases by 1 roughly when k doubles, which corresponds to squaring n. This backs up the space consumption as O(log(log(n))). For the next version I might incorporate >>33's complement idea to see what constant factor improvement it yields, or I might add third-order S-groups which will bring the runtime down to O(n^0.125).

Please verify the value of R(10^30) with other implementations.

157


VIP:

do not edit these